ar X iv : q - a lg / 9 70 70 31 v 1 2 4 Ju l 1 99 7 DOUBLE QUANTIZATION ON THE COADJOINT REPRESENTATION OF
نویسنده
چکیده
For g = sl(n) we construct a two parametric U h (g)-invariant family of algebras, (Sg) t,h , that is a quantization of the function algebra Sg on the coadjoint representation. Along the parameter t the family gives a quantiza-tion of the Lie bracket. This family induces a two parametric U h (g)-invariant quantization on the maximal orbits, which includes a quantization of the Kirillov-Kostant-Souriau bracket. Yet we construct a quantum de Rham complex on g * .
منابع مشابه
ar X iv : q - a lg / 9 70 70 31 v 2 1 2 O ct 1 99 7 DOUBLE QUANTIZATION ON THE COADJOINT REPRESENTATION OF SL
For g = sl(n) we construct a two parametric U h (g)-invariant family of algebras, (Sg) t,h , which defines a quantization of the function algebra Sg on the coadjoint representation and in the parameter t gives a quantization of the Lie bracket. The family induces a two parametric deformation of the function algebra of any maximal orbit which is a quantization of the Kirillov-Kostant-Souriau bra...
متن کاملar X iv : m at h - ph / 9 80 70 27 v 1 2 4 Ju l 1 99 8 Strict quantization of coadjoint orbits
A strict quantization of a compact symplectic manifold S on a subset I ⊆ R, containing 0 as an accumulation point, is defined as a continuous field of C *-algebras {A } ∈I , with A0 = C0(S), and a set of continuous cross-sections {Q(f)} f ∈C ∞ (S) for which Q0(f) = f. Here Q (f *) = Q (f) * for all ∈ I, whereas for → 0 one requires that i[Q (f), Q (g)]/ → Q ({f, g}) in norm. We discuss general ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997